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Abstract
We review the bond-boost method for accelerated molecular dynamics (MD) simulation and we
demonstrate its application to kinetic phenomena relevant to thin-film growth. To illustrate
various aspects of the method, three case studies are presented. We first illustrate aspects of the
bond-boost method in studies of the diffusion of Cu atoms on Cu(001). In these studies, Cu
interactions are described using a semi-empirical embedded-atom method potential. We
recently extended the bond-boost method to perform accelerated ab initio MD (AIMD)
simulations and we present results from preliminary studies in which we applied the bond-boost
method in AIMD to uncover diffusion mechanisms of Al adatoms on Al(110). Finally, a
problem inherent to many rare-event simulation methods is the ‘small-barrier problem’, in
which the system resides in a group of states connected by small energy barriers and separated
from the rest of phase space by large barriers. We developed the state-bridging bond-boost
method to address this problem and we discuss its application for studying the diffusion of Co
clusters on Cu(001). We discuss the outlook for future applications of the bond-boost method in
materials simulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A significant challenge in materials simulation is to conduct
long-time and large length simulations of structural evolution,
while accurately retaining atomic detail. Molecular dynamics
(MD) simulations can provide accurate detail at the atomic
scale. However, MD is not practical for simulating times
or lengths much beyond the nanoscale. In many materials,
dynamical evolution occurs through a series of ‘rare events’,
in which the system spends a long time (compared to the
vibrational timescale) in one potential-energy minimum before
escaping and moving on to another. Transition-state theory
(TST) [1] can predict the ensemble-averaged escape time for
a system to progress from one minimum to another. With

3 Present address: Software Design Ahnert GmbH, Arkonastrasse 45-49,
13189 Berlin, Germany.

this information, dynamical evolution can be simulated as
a series of long-time jumps based on the TST jump times
between minima. This is the aim of kinetic Monte Carlo
(KMC) simulations [2–6]. In principle, if a KMC simulation
can incorporate all minima of a system and the TST rates
of all possible long-time jumps between the minima, then
this technique can reach macroscopic times and (possibly,
with recent innovations in parallel KMC [7, 8]) lengths,
while retaining the accuracy of MD. In practice, however,
a significant limitation of KMC lies in determining all the
important rate processes that govern dynamical evolution.

Traditionally, TST search algorithms have been employed
to quantify the rates and mechanisms of rare events and a
number of efficient algorithms have been proposed [9–14].
However, these algorithms often require knowledge of the final
state, which is usually the unknown quantity that one would
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like to find. Even if the final state is known, most TST search
algorithms require an initial guess for the mechanism. This
can limit convergence to pathways near the initial guess, which
may not reflect the most important mechanism. TST search
algorithms have been developed based only on knowledge of
the initial state [15]; however, these do not inherently detect
rate processes with the correct canonical frequency and many
searches, along with auxiliary calculations, may be necessary
to obtain a correct description of the dynamics. If it were
possible to conduct a very long MD simulation, then the kinetic
processes responsible for dynamical evolution would arise
naturally, with the correct canonical frequency based on the
phase space dictated by the underlying potential surface. The
philosophy of accelerated MD methods is that it is possible to
achieve such simulations by using various means to accelerate
the MD trajectory for the escape of a system from a given
potential minimum.

To date, there have been several different types of
proposed accelerated MD methods [16–20]. In this paper, we
focus on the bond-boost method [21, 22], which is a variant
of Voter’s hyperdynamics scheme [16, 17]. We review the
bond-boost method and demonstrate its application to kinetic
phenomena relevant to thin-film growth in three case studies
designed to illustrate various aspects of the method. We discuss
the outlook for future applications of the bond-boost method in
materials simulation.

2. The bond-boost method

We consider an N-particle system in the canonical ensemble
evolving on a potential-energy surface composed of several
local minima. The TST rate kTST

i→ j of a particular transition from
state i to state j is given by the ensemble-averaged flux through
the dividing hypersurface that separates i and j :

kTST
i→ j = 1

2

(
2kBT

πm

)1/2
∫

i δ
†
i j�i exp(−βV {x}) dx∫

i �i exp(−βV {x}) dx
. (1)

Here β = 1/kBT , V is the potential energy, �i = 1 if the
system is in state i and zero otherwise, and δ

†
i j is the delta

function defining the location of the dividing hypersurface.
We note that MD simulations yield these rates naturally, by
sampling the canonical distribution via integration of Newton’s
equations of motion—although the timescales associated with
rare events often greatly exceed those accessible with MD.

Further considering the TST rate expression, we note that
the domain of the integral in the denominator of equation (1)
is over the entire phase space of state i , while the numerator
is non-zero only at the dividing surface between i and
j . The relative frequencies for the system to evolve from
state i to neighboring states j, l, . . . are governed by the
relative rates ki→ j/ki→l , which depend only on the numerator
in equation (1). On the other hand, the denominator in
equation (1) is needed to obtain the physical time for escaping
from minimum i . The philosophy behind hyperdynamics is
that, by manipulating the denominator in equation (1), i.e., the
partition functions of the local minima, without affecting the
transition states, we can achieve the same dynamical evolution

as on the original potential surface and we can accelerate
the simulation timescale. The challenge with hyperdynamics
approaches is to devise an effective means of altering the
partition functions of potential minima without influencing
transition states.

In most accelerated MD schemes based on hyperdynam-
ics, acceleration is achieved by adding a boost potential �V {x}
to the original potential V {x} [16, 17]. This boost poten-
tial must satisfy the condition that �V † = 0 at any divid-
ing hypersurface (†) between local minima. MD simulations
are then run on a new, ‘boosted’ potential surface V ∗{x} =
V {x} + �V {x}. On the boosted potential surface V ∗, equa-
tion (1) becomes

kTST
i→ j = 1

2

(
2kBT

πm

)1/2
∫

i δ
†
i j�i exp(−βV {x})dx∫

i �i exp(−βV ∗{x})dx
. (2)

If the new denominator is smaller, which can be ensured by
having �V > 0, the new rates k∗

i→ j are higher and the system
escapes more quickly out of the local minima. The connection
to the physical system is established by observing that

kTST
i→ j = k∗

i→ j

1

〈exp(β�V )〉∗ , (3)

where 〈 〉∗ represents a canonical average on the boosted
potential surface. The average escape time τTST

i→ j from the local
minimum via process i → j is the inverse of the corresponding
rate, so

τTST
i→ j = τ ∗

i→ j 〈exp(β�V )〉∗. (4)

In translation, the simulation time on the boosted potential
surface V ∗ is not equal to the physical time. The latter becomes
a statistical average and can potentially become orders of
magnitude higher than the simulation time.

A variety of different schemes have been proposed for
devising a boost potential �V such that �V > 0 at a
potential minimum and �V † = 0 at the dividing hypersurfaces
(†) [16, 17, 21–27]. Our group has developed the bond-
boost method [21, 22], in which an empirical form for the
boost potential is derived from the bond-breaking picture of
atomic cohesion in the solid state. Without assuming specific
processes, we tag all atoms that are able to participate in
configurational changes. In the case of a surface, this may
include all atoms within the first one or two layers. The boost
potential �V {x} is a function of all nearest-neighbor bond
lengths associated with the tagged atoms and is given by

�V {x} ≡ �V (r{x}) = A{r1 · · · rNb}
Nb∑

i=1

δV (ri ). (5)

Here, ri are the lengths of the tagged bonds, Nb is the number
of tagged bonds, A{r1 · · · rNb } is an envelope function, and
δV (ri ) is a boost potential applied to each bond i . To enforce
the condition that �V † = 0 at the dividing hypersurfaces
(†) we specify that �V → 0 when one of the tagged bonds
‘breaks’. If we monitor the relative stretch/compression of
bond i , given by

|εi | =
∣∣∣∣ri − r eq

i

r eq
i

∣∣∣∣ , (6)
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where ri is the instantaneous length of bond i and r eq
i is the

equilibrium value, we say that a bond has broken when εi of
any of the bonds exceeds an empirical threshold value of q .
We choose q to be smaller than the maximum fractional bond
change at the transition states of elementary processes. The
value of q for a given application can be determined from a
few trial calculations and a conservative estimate of q should
be sufficient to enforce �V † = 0 for all processes of interest.
In the discussion below, we focus on applications for which
a single value of the threshold is sufficient. However, it is
possible to define a boost based on multiple values of q (e.g.,
for different bond types) [28]. Empirical functional forms are
assigned to A{r1 · · · rNb} and δV (ri ) in equation (5). These
are continuous functions, whose form can be adapted to the
problem at hand—specific choices will be presented in the
sections below. The bond-boost potential δV (ri ) is maximum
when a bond is at its equilibrium value and goes to zero when
the fractional change in bond length reaches the threshold q:

δV (ri ) ≡ δV (εi) =
{

max if εi = 0

0 if |εi | > q ,
(7)

with εi defined by equation (6). The bond-boost potential
effectively lowers the binding energy of each bond that is close
to its equilibrium value.

The envelope function A{r1 · · · rNb } depends only on the
maximally stretched or compressed bond, and it is a continuous
function fulfilling the boundary conditions:

A{r1 · · · rNb} ≡ A(εmax) =
{

1 if εmax = 0

0 if εmax > q ,
(8)

with εmax = MAX{|εi |}. The envelope function couples all the
tagged bonds, so that when the system approaches a transition
state, all individual boost potentials go to zero. Since the
envelope function depends only on the maximally stretched
bond, it also channels the boost into the maximally stretched
bond that is about to break.

Equation (5) provides the boost potential when the system
is in a known local minimum. When the system leaves the
local minimum, one of the bonds exceeds the threshold q and
�V → 0. A new equilibrium configuration needs to be
found to define the new bond-stretch parameters r eq

i . There are
efficient ways to find energy minima, for example we employ
conjugate-gradient minimization [29]. In our implementation,
we define sequential time windows and check if the system is
boosted during those times. If no boost occurs, a transition to a
new state is assumed and the equilibrium configuration is reset
by finding the new minimum.

In summary, the bond-boost algorithm is as follows. The
bonds belonging to atoms that may participate in transitions
are tagged. We find the equilibrium configuration for the local
minimum and store the equilibrium values of the tagged bond
lengths. Standard MD is done on the boosted potential surface
defined by V ∗ = V + �V , with �V defined by equation (5).
When the system progresses to a new minimum, the boost
potential goes to zero and remains there. We detect that
and after some predefined time period, we reset the reference

equilibrium configuration accordingly. The physical time
increment δt corresponding to each MD time step δt∗ (where
δt∗ is in the fs range) is calculated according to equation (4):

δt = δt∗eβ�V . (9)

The usefulness of the bond-boost method resides in its
simplicity and general applicability. At each MD step, the
only additional computation involves the forces associated
with �V , since bond lengths are typically calculated in
standard MD algorithms. Thus, a boosted MD step requires
only a fraction more than the computation needed for a
regular MD step. By construction, the computational cost
of the method scales as the number of atoms included in
the boost, and therefore the relative computational overhead
should remain negligible for any system size. Additional work
is necessary to find the local energy minima. However, since
the transition rates are slow with respect to the timescale of
one MD step, many thousands of MD steps will correspond to
one minimization. Using conjugate-gradient algorithms, this
minimization should generally require only a few tens of force
calculations, which is a small relative overhead. In addition,
the method can be applied to systems modeled with any type
of force field, from pair potentials to first principles, since the
form of the boost potential can be tailored to the problem at
hand.

3. Applications

We have applied the bond-boost method to a variety of
problems involving thin-film growth [21, 22, 30]. Below, we
demonstrate its application to kinetic phenomena relevant to
thin-film growth in three case studies designed to illustrate
various aspects of the method. We first illustrate aspects
of the bond-boost method in studies of the diffusion of Cu
atoms on Cu(001) [21]. In these studies, Cu interactions are
described by a semi-empirical embedded-atom method (EAM)
potential [31], which provides good computational efficiency
and reasonable accuracy for metals with filled d shells. For
many applications it is desirable to achieve a more accurate and
detailed description of chemical bonding than that provided
by (semi-) empirical force fields. To address this concern,
we recently extended the bond-boost method to perform
accelerated ab initio MD (AIMD) simulations [32]. We discuss
results from preliminary studies in which we applied the bond-
boost method to uncover diffusion mechanisms of Al adatoms
on Al(110) using accelerated AIMD simulations. Finally,
a problem inherent in many rare-event simulation methods
(including KMC) is the ‘small-barrier problem’, in which the
system resides in a group of states connected by small energy
barriers and separated from the rest of phase space by large
barriers. We developed the state-bridging bond-boost method
to address this problem and we discuss its application to study
the diffusion of Co clusters on Cu(001) [22, 30].

3.1. Diffusion of Cu atoms on Cu(001): demonstration of the
bond-boost method

We can illustrate various basic aspects of the bond-boost
method in simulations of Cu atom, dimer, and vacancy
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(a)

(e)(d)

(c)(b)

Figure 1. Mechanisms by which Cu atoms, dimers, and a vacancy
can diffuse on Cu(001): (a) adatom hop; (b) adatom exchange;
(c) dimer exchange; (d) dimer hop; (e) vacancy hop. Atoms, dimers,
and first-layer surface atoms directly involved in the transition are
dark, while the rest of the first-layer surface atoms are light.

diffusion on the Cu(100) surface. The mechanisms for these
processes are depicted in figure 1. The interatomic interactions
in these studies are modeled with the EAM potential of Foiles
et al [31]. To model the Cu(001) surface, we use a six-
layer slab with 50 atoms in each layer. The two bottom
layers are immobile, while the third layer acts as a heat
bath. Constant temperature MD is performed using the Nosé–
Hoover algorithm [33] for atoms in the third layer. Atoms in
the top three layers follow Newton’s equations of motion for
the microcanonical ensemble. All atoms in the first layer, as
well as the adatom(s), are tagged for boosting. The nearest-
neighbor distance in the bulk is 2.556 Å, and we boost all bonds
that belong to the tagged atoms and are shorter than a cutoff of
3.0 Å in the local equilibrium configuration. This means that
about 300 bonds are boosted simultaneously (cf, equation (5)).

For the bond-boost potential (equation (5)), we employ
empirical functions for δV (ri ) and A{r1 · · · rNb } with the form

δV (ri ) = δV (εi ) = �V max

Nb

[
1 −

(
εi

q

)2
]

, (10)

and

A(εmax) =
[

1 −
(

εmax

q

)2
]

1 − (εmax/q)2

1 − P2
1 (εmax/q)2 , (11)

for ε ∈ [−q, q] and εmax ∈ [0, q]. As stipulated by
equation (7), δV (εi ) is maximum when a bond is at its
equilibrium value and goes to zero when the fractional change
in bond length reaches the threshold q . To determine specific
values for q , we used static calculations to find the maximal
relative bond stretch at transition states, q†, which ranges from
0.35 for adatom hopping to 0.45 for exchange and vacancy
hopping. We require q < q†, so we set q = 0.3. We
note that δV also depends on a maximum boost parameter
�V max. This parameter sets the magnitude of the total boost

Table 1. Prefactors (	0) and activation energies (EA) for elementary
diffusion processes of Cu/Cu(100). The (∗) values are from the MD
study of Boisvert and Lewis [34].

Process 	0 (THz) 	∗
0 (THz) EA (eV) E∗

A (eV)

Adatom hop 40(×e±0.5) 20(×e±0.2) 0.52 ± 0.03 0.49 ± 0.01
Adatom
exchange

270(×e±0.6) 437(×e±0.7) 0.73 ± 0.04 0.70 ± 0.04

Vacancy hop 54(×e±0.5) 27(×e±0.7) 0.44 ± 0.03 0.47 ± 0.05
Dimer hop 30(×e±0.7) 13(×e±0.5) 0.47 ± 0.03 0.48 ± 0.03
Dimer
exchange

190(×e±0.8) 320(×e±0.8) 0.71 ± 0.06 0.73 ± 0.05

potential �V and it needs to be on the scale of natural energy
barriers in the system (≈0.5 eV in this case). We tested
values from 0–0.5 eV for �V max. The envelope function
A(εmax) = A{r1 · · · rNb } depends only on the maximally
stretched or compressed bond and has the properties indicated
in equation (8). The form of equation (11) ensures that, as
the system approaches a transition state, all individual boost
potentials go to zero together with their first derivatives. This is
necessary to maintain a continuous derivative of the potential-
energy surface. The parameter P1 � 1 in equation (11)
controls the curvature near εmax = q , and we choose values in
the range 0.9–0.98. A large value means the force will change
rapidly close to the boundary, while a small value corresponds
to a ‘softer’ boundary.

Using accelerated MD, we calculated rates for all the
processes shown in figure 1 for temperatures ranging between
230 and 600 K [21]. For each temperature, we performed
several simulations of 30 ns (MD time) to obtain the rates of
these various processes. The prefactors and barriers obtained
from Arrhenius plots of the various rates as a function of
temperature are shown in table 1. The values for the barriers
agree well with static, TST estimates obtained using the step-
and-slide method [13]. Table 1 also contains energy barriers
and prefactors from the MD study of Boisvert and Lewis [34],
which both fall within the uncertainties of our results. Using
the same EAM potential as us, Boisvert and Lewis probed the
temperature range between 650 and 900 K with regular MD
simulations—below this range, the various rate processes are
too slow to occur to any appreciable extent over the timescale
of a regular MD simulation. Because of the acceleration
possible with the bond-boost method, we were able to probe
lower temperatures between 230 and 600 K.

To quantify the speed-up possible with the bond-boost
method, we plot the boost as a function of temperature in
figure 2. The boost is defined as the ratio of the physical time
to the simulation time. According to equation (4), it is given
as the average of the boost potential over the boosted potential
surface, i.e.,

Boost = 〈eβ�V 〉∗. (12)

The boosts in figure 2 are obtained as averages over all runs for
all the different types of rate processes shown in figure 1, with
�V max = 0.4 eV. In this study the computational overhead was
less than 10% and therefore the boosts shown in figure 2 were
not adjusted for it. The boost factor shows Arrhenius behavior,
increasing exponentially with inverse temperature, with values
of up to 106 at the low temperatures.
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(kBT)-1 (eV-1)

Figure 2. The average boost, given by equation (12), as a function of
temperature for the various diffusion processes shown in figure 1.

It is evident from equation (12) that the boost declines
with increasing temperature, since β is inversely proportional
to temperature. Additionally, the average displacement of the
atoms from equilibrium grows with increasing temperature
and sampling of high-boost regions of the potential surface
is reduced. On the other hand, at very low temperatures,
transition times may increase faster than the boost and no
transitions are observed over the simulation timescale. For
example, although very large boosts are possible below 230 K
in our simulations, we could not observe any transitions over
the simulation timescale at temperatures below about 230 K.
The method thus achieves peak efficiency in the mid-range
between the high-temperature domain of standard MD and
very low temperatures.

3.2. Diffusion of Al on Al(110): ab initio accelerated MD with
the bond-boost method

Achieving accurate multi-scale models of thin-film epitaxy
based on first principles is an important objective. As
discussed above, a popular method for simulating thin-film
growth is to employ KMC simulations based on mechanisms
and rates derived from TST searches on semi-empirical or
first-principles-derived potential surfaces. However, static
TST search algorithms are not guaranteed to converge to
the most salient kinetic mechanisms. In this example, we
highlight the utility of accelerated ab initio MD (AIMD)
simulations in uncovering the mechanisms underlying the
diffusion of Al on Al(110), which mediates the formation of
nanohuts during Al(110) homoepitaxy [35–37]. We use the
Vienna ab initio simulation package (VASP) [38–40], which
is based on density-functional theory (DFT), to characterize
the mechanisms and energy barriers by which Al diffusion
may occur. We perform two sets of calculations: TST
searches using the climbing-image nudged elastic band (CI-
NEB) method [12] to elucidate minimum-energy pathways
and, hence, diffusion mechanisms and energy barriers; and
accelerated MD simulations with the bond-boost method [21].
The CI-NEB method is implemented in the VASP package
and we modified the VASP source code to execute accelerated
AIMD simulations based on the bond-boost method. We show

Initial Transition Final

(a)

(b)

 〈110〉

 〈0
01

〉

Figure 3. Mechanisms by which Al can diffuse in the in-channel
direction on Al(110), indicating the initial, transition, and final states
for: (a) adatom hop and (b) adatom exchange. Atoms and first-layer
surface atoms directly involved in the transition are dark, while the
rest of the first-layer surface atoms are light.

how the combination of these two methods is beneficial in
understanding mechanisms of Al adatom diffusion.

We consider the diffusion of a single Al adatom on
Al(110). In the static, CI-NEB calculations, we constructed
periodic supercells with a slab thickness of 10 atomic layers
and 5 × 4 surface atoms in each layer. We use ultrasoft
Vanderbilt pseudo-potentials [41], as supplied by Kresse and
Hafner [42], the GGA-PW91 [43], Fermi–Dirac smearing [44]
with a width of 0.2 eV, and an energy cutoff of 129.2 eV. To
sample the Brillouin zone, we use a 5 × 4 × 1 Monkhorst–
Pack [45] k-point mesh. We tested the convergence of the slab
thickness, k-point mesh, etc in a previous study [46].

To probe diffusion mechanisms, we performed two sets
of calculations. Initially, we performed CI-NEB calculations
using three images in addition to the initial and final states.
The positions of the images are optimized to yield a minimum-
energy pathway in which (by virtue of the CI-NEB method)
the image with the highest energy resides at the transition state.
To confirm the transition states of the exchange mechanisms,
we obtained minimum-energy pathways utilizing our original
initial states and the transition states from the first calculation
as the final state. Because of the symmetry of the diffusion
mechanisms, it is sufficient to probe only half of the pathway.
These second calculations confirmed that no new minima or
transition states arise in the original pathways. In both sets
of calculations, we relax adatom positions (and the top five
surface layers) until the force on each unconstrained atom is
smaller than 0.01 eV Å

−1
.

One possible mechanism by which an Al adatom can
diffuse on Al(110) involves a hop between neighboring binding
sites along the [11̄0], or ‘in-channel’ direction, as shown in
figure 3(a). Using the CI-NEB method, we find the transition
state indicated in figure 3(a) and an energy barrier of 0.47 eV
for this mechanism. A more favorable mechanism for in-
channel diffusion is when the adatom changes places with
a surface atom in the exchange mechanism, partially shown

5
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Initial Transition Final

(a)

(c)

(b)

 〈110〉

 〈0
01

〉

Figure 4. Mechanisms by which Al can diffuse in the cross-channel
direction on Al(110) indicating the initial, transition, and final states
for: (a) adatom hop; (b) adatom exchange with a ‘linear’ intermediate
state and; (c) adatom exchange with the ‘diagonal’ transition state.
Atoms and first-layer surface atoms directly involved in the transition
are dark, while the rest of the first-layer surface atoms are light.

in figure 3(b). This mechanism involves two steps: a move
over a first transition state (shown in the figure) to a shallow,
intermediate state (not shown), over a second transition state
(a mirror image of that shown in the figure) to the final
state. We can calculate an effective barrier for the net move
from the initial state through the intermediate state to the
final state shown in figure 3(b) [32]. In the temperature
range between 200 and 500 K, this barrier ranges between
0.39 and 0.40 eV. The atom may also move in the [100], or
‘cross-channel’ direction. The energy barrier for the cross-
channel hop shown in figure 4(a) is 0.71 eV, making this move
unfavorable compared to the in-channel moves. However, if
we consider exchange diffusion via the mechanism shown in
figure 4(b), we find that with an energy barrier of 0.38 eV,
cross-channel exchange is on par with in-channel exchange.

In the accelerated AIMD simulations, we represent the
surface as a five-layer slab with 16 (4 × 4) atoms in each layer.
Atoms in the top two layers are allowed to move, while the
bottom three layers are fixed to the Al bulk lattice positions.
We use ultrasoft Vanderbilt pseudo-potentials [41], as supplied
by Kresse and Hafner [42], the GGA-PW91 [43], Methfessel–
Paxton smearing with a width of 0.2 eV, and an energy cutoff
of 129.2 eV. A 2 × 2 × 1 Monkhorst–Pack [45] k-point
mesh is employed to sample the Brillouin zone. To ensure
that our simulations are run within the canonical ensemble,
we implemented and utilized the Andersen thermostat [47]
within the VASP code. This thermostat robustly maintains
the desired temperature in our simulations and we also verified

that we could achieve the Maxwell–Boltzmann distribution of
velocities with this thermostat.

To enhance the computational efficiency of the AIMD
simulations, we use fewer k points and a thinner slab than we
do in the static TST calculations. This enhanced efficiency
comes at the expense of accuracy. Since we are using the
AIMD simulations to uncover mechanistic trends without
acquiring specific numbers, a certain loss of accuracy is
acceptable. Care must be taken, however, to ensure that the
accuracy of the AIMD simulations is sufficient to yield the
same qualitative results as the static TST calculations. To
this end, we used the CI-NEB method to calculate the energy
barriers for all of the diffusion mechanisms using the slabs
that we used for the AIMD simulations. Although key energy
barriers can differ by as much as 70 meV between a five-layer
slab with 4 k points and a ten-layer slab with 20 k points,
we nevertheless find that both slabs exhibit the same trends
regarding the relative values of the diffusion barriers.

For the accelerated AIMD simulations, our strategy is
different than that in our studies of the diffusion of Cu on
Cu(001), discussed above in section 3.1. In the studies
of Cu/Cu(001), our use of a semi-empirical EAM potential
enabled long MD simulations. Thus, the quantities shown
in table 1 and figure 2 for Cu/Cu(001) represent averages
over several hundred to several thousand hops [21]. AIMD
simulations have considerably more computational overhead
than simulations based on semi-empirical potentials and it is
difficult to compile sufficient statistics to obtain meaningful
estimates of average hop rates. Thus, here we exploit the fact
that we can accurately sample the canonical ensemble and,
even with limited statistics, we can find the most likely rate
process(es) that occur at a fixed temperature. We compare
these mechanisms to those we find with (static) CI-NEB
calculations to ensure we have found the most important
kinetic processes.

We consider the diffusion of an Al adatom on Al(110)
at temperatures ranging from 300 to 650 K. To perform
accelerated AIMD, we use a boost potential of the form given
by equations (5), (10), and (11) and we apply a boost to the
adatom, as well as to all the atoms in the top two surface
layers. We tested several different values of �V max, ranging
from 0.1 to 0.4 eV and we employ a threshold of q = 0.6.
We begin a simulation by running a short, 1 ps trajectory
to equilibrate the adatom and surface atoms to the desired
temperature. Subsequently the boost is ‘turned on’ and we
monitor the value of εmax as a function of time. As this value
approaches and exceeds the threshold q , the boost goes to zero
and we run the unboosted AIMD simulation for an additional
1–2 ps to allow the system to equilibrate in its new minimum.
By following the trajectories we can ascertain the mechanisms
by which the Al adatoms diffuse.

Figure 4(c) shows the only mechanistic sequence
observed in these simulations—cross-channel exchange. Close
comparison of this mechanism to the one initially uncovered
in static TST calculations (cf, figure 4(b)) reveals that the
transition state is different than that for the mechanism
in figure 4(b)—the accelerated AIMD simulations imply a
‘diagonal’ transition state formed by the adatom and the
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Figure 5. Boost achieved in ab initio accelerated MD simulations as
a function of temperature for �V max = 0.25 eV. At a fixed
temperature, the boost is obtained from one run only.

exchanged surface atom. Static estimates of the minimum-
energy path with the CI-NEB method will converge close
to the initial guess for the minimum-energy pathway. By
performing an additional CI-NEB search using an initial guess
based on the accelerated AIMD trajectories, we confirm that
a second transition state for cross-channel exchange occurs—
that shown in figure 4(c). The energy barrier associated with
this mechanism (0.33 eV) is 50 meV lower than the cross-
channel exchange mechanism shown in figure 4(b) and hence
this mechanism is more likely.

It is of interest to know the boost achievable in these
accelerated AIMD simulations. Ideally, the boost is obtained
as an ensemble average (using equation (12)) over many
different runs. However, the high computational overhead
associated with these simulations makes it difficult to obtain
ensemble averages. Instead, we obtain the boost from a single
trajectory run at each of the temperatures probed. The initial
and the final (unboosted) equilibration periods are excluded
in calculating the boost. The results from simulations with
�V max = 0.25 eV are shown in figure 5, where we see an
increase in the boost with decreasing temperature, similar to
that shown in figure 2 for Cu/Cu(001). The AIMD simulation
time (excluding equilibration periods) associated with these
different trajectories ranges from 5.8 ps at 350 K to 0.71 ps
at 500 K. Thus, we were able to attain physical times ranging
from 71 ps to 73 ns in these simulations. The boost associated
with Al/Al(110) diffusion is smaller that that for Cu/Cu(001)
because of the smaller energy barriers for diffusion on Al(110)
(cf, equation (12))—for the 5-layer slab used in the accelerated
AIMD simulations, the static barrier is only 0.26 eV.

3.3. Co/Cu(001) heteroepitaxy: the state-bridging bond-boost
method

The heteroepitaxial growth of Co on Cu substrates has been
studied extensively during the last decade. Systems consisting

of thin Co/Cu layers exhibit interesting properties stemming
from reduced dimensionality, strained atomic structure, and
magnetic interlayer coupling. Electronic properties of
heteroepitaxial thin-film structures are very sensitive to their
atomic-scale morphology, hence the importance of accurate
characterization of the growth morphology. In a series of
studies [22, 30], we probed kinetic mechanisms associated with
the growth of Co on Cu(001) using both accelerated MD and
TST search algorithms. To describe Co and Cu interactions
in these studies, we employ an empirical tight-binding second-
moment approximation (TBSMA) potential that was originally
developed by Levanov and colleagues [48] and modified by
us [30] to provide better agreement with the results of first-
principles calculations by Pentcheva and Scheffler [49]. To
model the Cu(001) substrate, we employ a simulation cell with
a slab consisting of five Cu(001) layers with 1296 atoms/layer.
We apply periodic boundary conditions in the directions
parallel to the surface. In our accelerated MD simulations,
the bottom two layers are immobile and fixed to ideal bulk
positions. The middle layer is connected to a Nosé–Hoover
thermostat [33] for controlling the temperature, while the
top two layers follow Newton’s equations of motion for the
microcanonical ensemble.

In the initial stages of low-temperature, thin-film growth
in this system, Co adatoms aggregate to form small islands
on top of the Cu(001) surface. These islands can diffuse and
rearrange through atoms hopping along their edges, as well as
through shearing mechanisms. Figure 6 shows typical low-
temperature kinetic mechanisms involved in the diffusion of
Co adatoms and small islands on Cu(001) and table 2 indicates
the energy barriers for these processes that we obtained in
TST searches based on the step and slide method [13], as
well as with the accelerated MD simulations discussed below.
This system is a prime example of the ‘small-barrier problem’
because diffusion along island edges is much faster than
isolated adatom hopping. With a static barrier of 0.30 eV, edge
diffusion (figure 6(c)) is about 106 times faster than adatom
hopping (figure 6(a), �E static = 0.63 eV) at room temperature
and trimer rotation (figure 6(d), �E static = 0.10 eV) is
about 108 times faster than adatom hopping. Fast trimer
rotation leads to a pool of 24 different states corresponding
to different trimer configurations connected by small barriers.
Without special measures, even accelerated MD simulations
are limited by the short timescale of repetitive edge hops and
trimer rotations. Here we review the state-bridging bond-
boost method [22] to address the small-barrier problem in this
system.

Figure 7 illustrates the essence of the small-barrier
problem and the general concepts associated with the State-
Bridging bond-boost method. In the bond-boost method, the
time boost is controlled by the magnitude of the boost potential
�V max (cf, equation (10)), which can, in principle, be tuned.
However, there is an upper limit on the achievable boost, as a
strong boost that exceeds the transition-state barrier does not
preserve the correct dynamics of the low-barrier processes.
As illustrated in figure 7(a), the shallow states A, B, C,
and D become local peaks in this case and the minima are
not effectively sampled, as the system is pushed toward the
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(a)

(e)(d)

(c)(b)

(f)

Figure 6. Low-temperature mechanisms by which Co adatoms and
small islands diffuse on Cu(001): (a) adatom hop; (b) dimer hop;
(c) adatom hop at a Co step edge; (d) trimer rotation; (e) trimer hop
via a concerted, two-atom shearing mechanism; (f) heptamer hop via
a concerted, three-atom shearing mechanism. Co atoms are shown in
blue (dark) and Cu surface atoms are shown in red (light).

Table 2. Energy barriers �E obtained from accelerated MD
simulations of the diffusion processes of Co/Cu(001) shown in
figure 6. Static values are obtained with the step-and-slide
method [13].

Process �E static (eV) �EMD (eV)

Adatom hop 0.63 0.63
Dimer hop 0.62 0.63
Adatom edge hop 0.30 —
Trimer rotation 0.10 —
Trimer shear 0.64 0.65
Heptamer shear 0.56 0.57

transition states. With a small boost, appropriate for shallow
minima (cf, figure 7(b)), the system will rapidly and repeatedly
cycle between A, B, C, and D and escape to state E only over
a much longer timescale. The bulk of the simulation time is
spent on these repeated transitions and evolution of the system
is limited. Our proposed solution to this problem is to combine
the large boost shown in figure 7(a) with ‘bridge potentials’
�V bridge, which span the transition states between states A–
D, as shown in figure 7(c). In doing this, we consolidate the
shallow states A–D into a single, coarse state. This procedure
rests on the observation that equilibrium between the shallow
states is reached long before any slow event D → E occurs.
Since, on the timescale of the slow escape, the ‘fast’ dynamics
becomes irrelevant, we drop the requirement that �V (x) = 0
(cf, section 2) at the ‘fast’ transition states. Thus, for the
escape rate kD→E the entire set A ∪ B ∪ C ∪ D acts as the
‘initial state’. Below, we outline the essential elements of
the state-bridging bond-boost method—details can be found
elsewhere [22].

The first issue in implementing the scheme shown in
figure 7(c) is definition and detection of fast, recurrent
processes as those having barriers below a threshold value
�E th. When an event M → N occurs, we determine if the

(a)

(b)

(c)

A DB C

E

ΔV

A B C D

E
Δ V

A B C D

E

ΔV

Δ V
bridge

Figure 7. Illustration of the ‘small-barrier’ problem: (a) too large of
a boost (large �V max) leads to the creation of artificial minima at
transition states; (b) an appropriate (small) boost will lead to rapid
cycling of the system between shallow minima, with low
acceleration; (c) combination of a large boost with bridging
potentials to consolidate the shallow states into one, large state.

barrier �E†
M→N is less than �E th. This is done with little

overhead using the step-and-slide method [13]. If a process
is tagged as ‘fast’, the initial and final states M and N are
stored for pattern matching, i.e. when the system revisits state
M it should ‘recognize’ its transition to N as a fast process and
activate the appropriate bridge potential. The second element
of the State-Bridging method is to construct a bridge potential
between M and N (see figure 7(c)) The complete boost �V (x)

is obtained by taking the envelope of all bond and bridge terms
which are active at the particular instantaneous configuration.

The algorithm proceeds as follows: after each event, we
adopt a low boost, i.e. �V max � �E th, that preserves the
correct fast dynamics. The low boost allows for accurate
dynamics of the fast events, albeit with low acceleration. As
each new shallow state is encountered, it is stored and a bridge
potential is constructed between the new state and its preceding
state. In this way, we construct a chain of connected states.
Eventually, we sample all of the shallow states. If no new
state is encountered during a predefined waiting time twait, the
boost strength is increased to the desired high value, the bridges
are activated, and the simulation switches to the timescale
of the slow events. We choose twait larger than the average
waiting time for a process having �E th. In each new state,
the simulation code performs local pattern matching against
stored states to find the applicable bridge potential terms.
With efficient state recognition algorithms, the computational
overhead is generally less than 10% of the normal simulation
time for our test cases, and should remain low for a finite
number of fast processes.
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Using the State-Bridging bond-boost method, we studied
the diffusion of the small Co/Cu(001) islands that are shown
in figure 6. Energy barriers from static calculations and
bridged, accelerated MD simulations are shown in table 2
and exhibit excellent agreement. Hopping along island
edges is much faster than events that lead to center-of-mass
motion of small islands, which are mainly collective shearing
mechanisms. Dimers, trimers and heptamers have a high
mobility, comparable to that of the isolated adatom. The trimer
hops via a concerted shearing mechanism of two atoms, while
the heptamer hops via concerted shearing of three atoms in its
middle row. A less favorable mechanism for heptamer hopping
involves an edge atom climbing on top of the cluster and
descending again. By overcoming the small-barrier limitation,
we achieve boosts ranging from 104 at 450 K to 108 at 250 K
and slow island diffusion is correctly captured.

4. Conclusions and future outlook

Thus, we reviewed the bond-boost method and its application
to thin-film epitaxy. There are a number of future prospects
for this method in materials, catalysis, and even possibly
in biology. Accelerated MD methods can be useful for
finding salient kinetic processes and even for simulating certain
experiments [30]. Although the efficiency of accelerated
MD will improve as computing capabilities advance from the
terascale to the petascale, perhaps an ideal solution in terms of
efficiency is to combine these methods with KMC simulations.
This marriage will improve our capabilities for multi-scale
materials simulation.
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